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Abstract
We consider a self-avoiding walk on the simple cubic lattice, as a model of
localization of a random copolymer at an interface between two immiscible
liquids. The vertices of the walk are coloured A or B randomly and
independently. The two liquid phases are represented by the two half-spaces
z > 0 and z < 0, and the plane z = 0 corresponds to the interface between the
two liquids. The energy depends on the numbers of A-vertices with positive
z-coordinate and B-vertices with negative z-coordinate. In addition there is a
vertex–interface interaction, irrespective of the colour of the vertex. We use
exact enumeration and series analysis techniques to investigate the form of the
phase diagram and how it changes as the magnitude of the vertex–interface
interaction changes.

PACS number: 05.40.Fb

1. Introduction

Random copolymers are an interesting example of a system with quenched randomness (Brout
1959) since the sequence of comonomers is determined by a random process but is then fixed.
Different copolymer molecules will have different monomer sequences so an average over the
possible sequences is necessary in order to determine thermodynamic and other properties.

In this paper, we are interested in the localization of a random copolymer at the interface
between two immiscible liquids, which we call the α-phase and the β-phase. A typical situation
would be two liquids such as oil and water and a copolymer with two types of monomers which
are respectively hydrophilic and lyophilic. At high temperatures the polymer might delocalize
into the energetically most favourable phase while at low temperatures it will localize at and
near the interface. We shall represent the polymer molecules by self-avoiding walks on the
simple cubic lattice with vertices of the walk coloured A or B (randomly and independently)
to represent the two types of comonomers. For most of this paper we shall take the probability
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p that a vertex is coloured A to be 1/2. There is an energy term for monomers of type A in
the α-phase and for monomers of type B in the β-phase. In addition there is an interaction of
both types of monomer with the interfacial plane separating the two liquid phases.

Localization of a random copolymer at an interface has been investigated by Sinai and
Spohn (1966), Bolthausen and den Hollander (1997), Maritan et al (1999), Biskup and
den Hollander (1999), Martin et al (2000) and Madras and Whittington (2003). The model
considered here is an extension of that introduced by Martin et al (2000) and has also been
investigated by Madras and Whittington (2003). In particular, Martin et al derived several
qualitative features of the phase diagram in the absence of a vertex–interface interaction, and
estimated the locations of the phase boundaries for this case, using numerical approaches.
Madras and Whittington derived additional qualitative results about the shapes of the phase
boundaries and extended these results to the case with a non-zero vertex–interface interaction.
The primary aim of this paper is to determine, using exact enumeration and series analysis
techniques, the form of the phase diagram and how it depends on the vertex–interface
interaction.

We consider the simple cubic lattice Z
3 and write (x, y, z) for the coordinates of a vertex

of the lattice. The α-phase is represented by the half-space z > 0, the β-phase by the half-
space z < 0 and the interface by the plane z = 0. We consider n-edge self-avoiding walks with
vertices numbered 0, 1, 2, . . . , n with the zeroth vertex fixed at the origin. Since this vertex is
fixed its colour is irrelevant. The vertices i = 1, 2, . . . , n are independently coloured A with
probability p and B with probability 1 − p. We write χi for the colouring (A or B) of the ith
vertex and χ as a shorthand for {χ1, χ2, . . . , χn}. Suppose that cn(vA, vB,w|χ) is the number
of n-edge self-avoiding walks, starting at the origin, with colouring χ , having vA vertices
coloured A with positive z-coordinate, vB vertices coloured B with negative z-coordinate and
w vertices (of either colour) with z-coordinate equal to zero. We define the partition function

Zn(α, β, γ |χ) =
∑

vA,vB ,w

cn(vA, vB,w|χ) eαvA+βvB +γw (1.1)

and the corresponding free energy

κn(α, β, γ |χ) = n−1 log Zn(α, β, γ |χ). (1.2)

We now give a brief summary of what is known rigorously. The proofs can be found
in Martin et al (2000) and Madras and Whittington (2003). Suppose that cn is the number of
self-avoiding walks on the simple cubic lattice, starting at a specified point (say the origin).
Then the connective constant (Hammersley 1957) of the lattice is

κ3 = lim
n→∞ n−1 log cn. (1.3)

The quenched average free energy is the average of κn(α, β, γ |χ) over all colourings χ and it
is known that its limit

κ̄(α, β, γ ) = lim
n→∞〈κn(α, β, γ |χ)〉 (1.4)

exists, where the angular brackets denote an average over colourings. It is also known that
κ̄(α, β, γ ) = κ3 + αp when α � 0, β � 0, γ � 0 and κ̄(α, β, γ ) = κ3 + β(1 − p) when
α � 0, β � 0, γ � 0. The first case corresponds to delocalization into the α-phase (z > 0)

and the region of (α, β, γ )-space for which this equality holds is denoted Dα . The second
case corresponds to delocalization into the β-phase (z < 0) and the corresponding region of
(α, β, γ )-space is denoted Dβ . Since these two expressions are lower bounds on κ̄ for all
α, β, γ , we say that the walk is delocalized if

κ̄(α, β, γ ) = κ3 + max{αp, β(1 − p)} (1.5)
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and localized if

κ̄(α, β, γ ) > κ3 + max{αp, β(1 − p)}. (1.6)

To simplify the presentation we now specialize to the case p = 1/2. For γ � 0 there
is a phase boundary β = βc(α, γ ) in the first octant of the (α, β)-plane, where κ̄(α, β, γ )

is singular. See figure 1 of Madras and Whittington (2003) for a schematic picture of the
phase boundary for γ � 0. This phase boundary passes through the origin, has a horizontal
asymptote as α → ∞ and is a concave non-decreasing function of α. There is a symmetry-
related phase boundary in the second octant (obtained by reflection in the line β = α) and
these two phase boundaries meet only at the origin. There are similar phase boundaries in the
fifth and sixth octants and the boundary in the fifth (sixth) octant has a horizontal (vertical)
asymptote as α → −∞ (β → −∞). If we consider γ � 0 then there exists γ1 � 0
such that for all γ > γ1 the two phase boundaries do not have any common points (indeed,
for each α, the point (α, α, γ ) is in the interior of the localized region). See figure 2 of
Madras and Whittington (2003) for a schematic picture of the phase boundary for γ > γ1. It
is known that γ1 � 2κ3 −κ2 − sinh−1 cosh κ3 where κ2 is the connective constant of the square
lattice (Hammersley et al 1982, Madras and Whittington 2003, equation 2.5). Moreover, there
exists γ2 such that for all γ > γ2 the system is localized at all points in the third quadrant of
the (α, β)-plane, and γ2 � κ3 − κ2 (Madras and Whittington 2003, theorem 5(v)). Finally
there exists γ3 such that for all γ > γ3 the whole (α, β)-plane is in the localized phase and
log 2 � γ3 � 4κ3 (Madras and Whittington 2003, theorem 11).

2. The form of the phase diagram

We have used exact enumeration data (originally derived in Martin et al (2000)) and ratio
analysis methods (Gaunt and Guttmann 1974) to estimate the values of κ̄(α, β, γ ) and hence
to investigate the form of the phase diagram in the (α, β)-plane for various values of γ . If
we start at a point in the fourth quadrant where the system is delocalized into the α-phase,
then we know that κ̄(α, β, γ ) = κ3 + α/2 independent of β. Fixing α and γ we can increase
β and attempt to locate the last value β = βc(α, γ ) for which κ̄ = κ3 + α/2; hence for
α � β � βc(α, γ ) the system is localized. Following this strategy we find the approximate
values of βc(α, γ ) for a variety of values of α at fixed γ . In a similar way one can decrease α

at fixed β and γ to cross the phase boundary from a different direction.
A standard assumption for self-avoiding walk models would be that 〈κn(α, β, γ |χ)〉

approaches κ̄ as n → ∞ with a correction term of order (log n)/n (see, for example,
Vanderzande (1998)). If we define

Qn = en〈κn(α,β,γ |χ)〉 (2.1)

then a simple assumption for the behaviour of Qn, for large n, is

Qn = A eκ̄nnθ−1(1 + Bn−1 + o(n−1)). (2.2)

Defining Rn = √
Qn/Qn−2 we have, from equation (2.2),

Rn = eκ̄

(
1 +

θ − 1

n
+ o(n−1)

)
(2.3)

and κ̄ can be estimated by plotting Rn against 1/n and extrapolating to large n. Nonlinear
behaviour can arise from the presence of confluent singularities, i.e. from terms in (2.2) of the
form n−� with � < 1. When the system is in the localized phase the exponent θ should be
characteristic of two-dimensional behaviour so we expect that θ = 43/32. In the delocalized
phases, the walk should be essentially in a half-space so we expect that θ is about 0.68
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Figure 1. The phase diagram in the (α, β)-plane for γ = 0.2 and p = 1/2. The dashed lines are
bounds on the location of the phase boundary. Solid lines indicate regions that the phase boundary,
βc(α, γ ), is estimated to intersect. A � is used to mark a point which is estimated to be in Dα

and a ◦ marks a point estimated to be in the localized phase. Only the estimated phase boundary
between the localized region and the delocalized region Dα is shown; the other phase boundary
can be obtained by reflection in the line β = α.

(see, e.g. De’Bell and Lookman 1993). We can make use of this information to construct
biased estimates of κ̄ . If, for a triple (α, β, γ ), we know θ exactly then

Yn(θ) = nRn

n + θ − 1
= eκ̄ (1 + o(n−1)) (2.4)

so that Yn(θ) approaches eκ̄ with zero slope when extrapolated against n−1. (Again, deviations
from zero slope can be attributed to confluent terms.) For α, β, γ values well inside either the
localized or delocalized regions, this behaviour (with the appropriate value of θ ) can confirm
the nature of the phase. Close to the phase boundary, however, the situation is less clear
but these additional functions still give useful information and can help in estimating the
value of κ̄ .

We have investigated only one phase boundary since the other is derivable by reflection
in the line β = α. In figure 1 we show our estimate of the location of the phase boundary for
γ = 0.2 based on exact values of Qn for n � 20. The vertical dashed line in the third quadrant
and the unit slope line through the origin are bounds on the location of the phase boundary,
obtained from the results of Martin et al (2000) and Madras and Whittington (2003). More
specifically, the vertical dashed line in the third quadrant is based on

α = 2(γ − κ3 + κ2) (2.5)

which comes from theorem 5(iv) in Madras and Whittington (2003), and uses recent numerical
estimates of κ3 (MacDonald et al 2000) and κ2 (Jensen and Guttmann 1999). The bound β = α

comes from corollary 3 of Madras and Whittington (2003). The curve in the first quadrant for
α � γ − log(2 − eγ ) is

β = log(2 − e−α) (2.6)

which is a lower bound on βc(α, γ ), for γ < log 2, obtained by the partial annealing argument
used in theorem 8 of Madras and Whittington (2003). The vertical dashed line in the first and
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Figure 2. The phase diagram in the (α, β)-plane for γ = 0.4. The symbols, lines and bounds are
otherwise as in figure 1.

fourth quadrants is α = γ − log(2 − eγ ) and is a bound on the phase boundary obtained from
corollary 9(ii) of Madras and Whittington (2003). Note that the phase boundary does not pass
through the origin and hence the phase boundaries of Dα and Dβ are disjoint. This implies
that γ1 < 0.2. Since part of the phase boundary is in the third quadrant, the results suggest
that γ2 > 0.2. We shall return to estimating the values of γ1 and γ2 in the next section. In
figure 2 we show the corresponding phase boundary for γ = 0.4. The phase boundary has
shifted to the right and now is entirely outside the third quadrant (we checked this for values
of β down to −12) so γ2 appears to be less than 0.4. We again show the bounds derived from
the results of Martin et al (2000) and Madras and Whittington (2003). The lower bound on
the location of the phase boundary in the first quadrant is quite effective at values of α larger
than about 1.1.

3. Estimates of the critical values of γ

We recall that there exists a value γ1 such that the point (0, 0, γ ) is in the interior of the
localized phase for all γ > γ1 and that it is known that γ1 � 2κ3 − κ2 − sinh−1 cosh κ3 which
is approximately 0.49, using recent numerical estimates of κ3 (MacDonald et al 2000) and κ2

(Jensen and Guttmann 1999). One would expect that γ1 = 0 (De’Bell and Lookman 1993)
but there is no proof of this, and the bound given above is the best that is known rigorously.
In order to estimate γ1 numerically we have made use of that fact that κ̄(0, 0, 0) = κ3 and
κ̄(0, 0, γ ) > κ3 for every γ > γ1. We have used ratio analysis methods to estimate κ̄(0, 0, γ )

for values of γ between zero and 0.49 in an attempt to find smaller values of γ where we can be
reasonably certain that the value of κ̄(0, 0, γ ) is greater than κ3. In figure 3 we show the results
of a ratio analysis for α = β = 0, γ = 0.075 where we plot Rn as well as Yn(θ) for θ = 43/32
and for θ = 0.68. We also show linear extrapolants of Rn, i.e. Ln = (nRn − (n − 2)Rn−2)/2.
(Note that equation (2.2) implies that Ln = eκ̄ (1 + o(1)).) There is strong evidence that these
four plots (which must have a common intercept) converge to a value larger than κ3 indicating
that the point (0, 0, γ ) is in the localized phase when γ = 0.075, and hence that γ1 < 0.075.
In figure 4, estimates of eκ̄(0,0,γ ) based on extrapolation of the ratios are presented for γ � 0;
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Figure 3. The ratios Yn(0.68) (+), Rn = Yn(1) (◦), Yn(43/32) (�) and the linear extrapolant,
Ln (�), are shown for α = 0, β = 0, γ = 0.075. The lowest horizontal dashed line is the line
y = eκ3 and the other dashed lines are sample linear fits to the ratios and a sample quadratic fit to
the linear extrapolant.
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Figure 4. The free energy estimates for α = 0, β = 0.

these results are consistent with the conjecture that γ1 = 0. Our error bars are based on several
types of fit which include Yn(43/32) having zero limiting slope.

If γ > γ2 the third quadrant of the (α, β)-plane is entirely in the localized phase (so that
the phase boundary does not enter this quadrant). We know that γ2 � κ3 − κ2 ≈ 0.574, using
numerical estimates of κ3 and κ2. Figures 1 and 2 give numerical evidence that 0.2 < γ2 < 0.4,
but we have tried to obtain a more precise value of γ2 by estimating the value of κ̄(0, β, γ ) for
large negative values of β and for values of γ between 0.2 and 0.4, and comparing to κ3 + α/2,
the value when delocalized into the α-phase. Figures 1 and 2 suggest that taking a value
of β = −6 is probably sufficient. To complement this approach we have also investigated
β = −∞. To justify this, James et al (2003) proved that for the quenched average free energy,
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〈κn(α, β, γ |χ)〉, the order of the two limits β → −∞ and n → ∞ can be interchanged.
Hence we can first set β = −∞ and then extrapolate to large n to investigate the value of

κ̄(α,−∞, γ ) ≡ lim
β→−∞

lim
n→∞〈κn(α, β, γ |χ)〉. (3.1)

We next explain how this approach can be used to obtain estimates for both γ2 and γ3.
Define

γc(α, β) ≡ sup{γ : (α, β, γ ) ∈ Dα} (3.2)

for any fixed α � ∞ and β � −∞ such that the set of γ on the right-hand side is not
empty. We note that for β1 > β2, if (α, β1, γ ) ∈ Dα then (α, β2, γ ) ∈ Dα . Note also from
theorem 2 of Madras and Whittington (2003) that (α, β, γc(α, β)) ∈ Dα . Hence for β1 > β2

we have that (α, β1, γc(α, β1)) ∈ Dα and hence (α, β2, γc(α, β1)) ∈ Dα . Then, the definition
of γc(α, β) implies that γc(α, β2) � γc(α, β1). Thus

sup
β>−∞

γc(α, β) = lim
β→−∞

γc(α, β) � γc(α,−∞) < ∞ (3.3)

where the last inequality follows from theorem 11 of Madras and Whittington (2003). We
expect and assume that

lim
β→−∞

γc(α, β) = γc(α,−∞). (3.4)

A similar argument, using the fact that (α2, β, γ ) ∈ Dα implies (α1, β, γ ) ∈ Dα for α1 > α2,
can be used to show that

sup
α<∞

γc(α, β) = lim
α→∞ γc(α, β) � γc(∞, β) < ∞ (3.5)

where the last inequality follows from theorem 11 of Madras and Whittington (2003). We
expect and assume that

lim
α→∞ γc(α, β) = γc(∞, β). (3.6)

Note that

γ2 ≡ sup{γ : (α, β, γ ) ∈ Dα for some α � 0,−∞ < β � α} (3.7)

and

γ3 ≡ sup{γ : (α, β, γ ) ∈ Dα for some α < ∞,−∞ < β � α}. (3.8)

Then from equation (3.2) we have

γ2 = sup{γc(α, β) : α � 0,−∞ < β � α} (3.9)

and

γ3 = sup{γc(α, β) : α < ∞,−∞ < β � α}. (3.10)

However since γc(α, β) is non-increasing in β and non-decreasing in α, therefore

γ2 = lim
β→−∞

γc(0, β) (3.11)

and

γ3 = lim
α→∞ lim

β→−∞
γc(α, β) (3.12)

where for the first equation the fact that γc(α, β) is continuous at α = 0 has been used (this
follows from theorem 2 of Madras and Whittington (2003)). This is the route that we have
followed in estimating γ2. In fact it is convenient to determine the approximate location of
the transition curve in the (α, γ )-plane when β = −∞ since this yields estimates both of γ2
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Figure 5. The phase diagram in the (α, γ )-plane, with β = −∞. The phase boundary, γc(α, β),
is expected to cross each of the solid lines and the symbols � and ◦ have the same meaning as in
figure 1.

and γ3. In particular, in the (α, γ )-plane when β = −∞, assumptions (3.4) and (3.6) and
equation (3.12) imply that the horizontal asymptote is γ = γ3 and that γ3 = γc(∞,−∞).

For β = −∞ and a given colouring χ , the only walks which have a positive probability
of occurring are those which have no B monomers in the β-phase (i.e. z < 0). Hence we
define the partition function

Zn(α,−∞, γ |χ) =
∑
vA,w

cn(vA, 0, w|χ) eαvA+γw (3.13)

and the corresponding free energy

κn(α,−∞, γ |χ) = n−1 log Zn(α,−∞, γ |χ). (3.14)

Note that for β = −∞, max{α/2, β/2} = α/2 for all finite α so that the region Dβ does
not exist except possibly at α = −∞. Our estimate of the location of the phase boundary in
the (α, γ )-plane at β = −∞ is given in figure 5. The upper bound on the phase boundary
(a dashed line with positive slope) is

γ = κ3 − κ2 + α/2 (3.15)

using numerical estimates for κ3 and κ2, and follows from theorem 5(iii) of Madras and
Whittington (2003). The lower bound (a dashed curve and vertical line) is

γ = log

(
2

1 + e−α

)
for α � − log 2

α = − log 2 for γ � log(2/3)

(3.16)

which follows from the proof of theorem 8 of Madras and Whittington (2003). Define

αc(β, γ ) ≡ inf{α : (α, β, γ ) ∈ Dα} (3.17)

for any fixed β � −∞ and fixed γ � −∞ such that the set of α on the right-hand side is
not empty. Note that arguments analogous to those which led to equation (3.3) can be used
to show that αc(β, γ ) is a non-decreasing function of both β and γ . We note further that
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for fixed finite β, theorem 6 of Madras and Whittington (2003) implies that there is a vertical
asymptote, α = α∗

A(β) ≡ limγ→−∞ αc(β, γ ) = infγ>−∞ αc(β, γ ) � β, in the (α, γ )-plane.
James et al (2003) have proved that for −∞ � β � α < ∞

κ̄(α, β,−∞) ≡ lim
γ→−∞ lim

n→∞〈κn(α, β, γ |χ)〉 = lim
n→∞ lim

γ→−∞〈κn(α, β, γ |χ)〉 = κ3 + α/2.

(3.18)

Hence we expect (assuming the continuity of the phase boundary at γ = −∞) that α∗
A(β) = β

for finite β and that there is no vertical asymptote for β = −∞. Figure 5 is consistent with
this.

For our estimate of γ2, it was found that the point (0,−∞, 0.25) ∈ Dα while for the point
(0,−∞, 0.3) the system was localized. Hence we estimate 0.25 � γ2 � 0.3.

To estimate γ3 we have estimated the horizontal asymptote in figure 5. This was based on
looking at the free energy estimates for α large, e.g. α = 20, and also by setting α = ∞. In the
latter case, we use the results of James et al (2003) which prove that for any β < ∞ the order
of the limits n → ∞ and α → ∞ can be interchanged for the modified quenched average free
energy κ̄ ′

n(α, β, γ ) = 〈κn(α, β, γ |χ)〉 − α/2. For the case β = −∞ and α = ∞, the only
walks which contribute to κ̄ ′

n(∞,−∞, γ ) are those in z � 0 in which all the A-vertices are in
z > 0. From an analysis of extrapolants of κ̄ ′

n(∞,−∞, γ ) (compared with κ3), we conclude
that 1 � γ3 � 1.1.

4. Discussion

We have used exact enumeration and series analysis methods to estimate the locations of
the phase boundaries for a self-avoiding walk model of a random copolymer localizing at the
interface between two liquid phases. Our results give quantitative estimates which confirm the
qualitative features predicted by Martin et al (2000) and Madras and Whittington (2003). We
have incorporated the effect of an interaction (γ ) of the vertices of the walk with the interfacial
plane between the two liquid phases and have estimated the critical values of γ where (i) the
point (0, 0, γ ) becomes localized, (ii) all of the third quadrant of the (α, β)-plane becomes
localized and (iii) the whole (α, β)-plane becomes localized.

Many questions remain open. Settling the question as to whether or not γ1 is zero is
closely related to the open question of the location of the adsorption transition for the self-
avoiding walk model of homopolymer adsorption at a penetrable surface (Hammersley et al
1982, De’Bell and Lookman 1993).

We have said nothing about the order of the localization transition. Causo and Whittington
(2003) studied this question by Monte Carlo methods and found evidence that, when γ is zero,
the order of the transition is different in the first and third quadrants. Presumably the origin
in the (α, β)-plane is a multi-critical point where the order changes, though this is not known.
What happens when γ > γ1, so that the phase boundaries do not have a common point at the
origin? This problem could be addressed by Monte Carlo methods.
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